Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 679, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436717

RESUMO

Fagonia indica (L.) is an important medicinal plant with multitude of therapeutic potentials. Such application has been attributed to the presence of various pharmacological important phytochemicals. However, the inadequate biosynthesis of such metabolites in intact plants has hampered scalable production. Thus, herein, we have established an in vitro based elicitation strategy to enhance such metabolites in callus culture of F. indica. Cultures were exposed to various doses of UV radiation (UV-C) and grown in different photoperiod regimes and their impact was evaluated on biomass accumulation, biosynthesis of phytochemicals along antioxidant expression. Cultures grown under photoperiod (16L/8D h) after exposure to UV-C (5.4 kJ/m2) accumulated optimal biomass (438.3 g/L FW; 16.4 g/L DW), phenolics contents (TPC: 11.8 µgGAE/mg) and flavonoids contents (TFC: 4.05 µgQE/mg). Similarly, HPLC quantification revealed that total production (6.967 µg/mg DW) of phytochemicals wherein kaempferol (1.377 µg/mg DW), apigenin (1.057 µg/mg DW), myricetin (1.022 µg/mg DW) and isorhamnetin (1.022 µg/mg DW) were recorded highly accumulated compounds in cultures at UV-C (5.4 kJ/m2) dose than other UV-C radiations and light regimes.. The antioxidants activities examined as DPPH (92.8%), FRAP (182.3 µM TEAC) and ABTS (489.1 µM TEAC) were also recorded highly expressed by cultures under photoperiod after treatment with UV-C dose 5.4 kJ/m2. Moreover, same cultures also expressed maximum % inhibition towards phospholipase A2 (sPLA2: 35.8%), lipoxygenase (15-LOX: 43.3%) and cyclooxygenases (COX-1: 55.3% and COX-2: 39.9%) with 1.0-, 1.3-, 1.3- and 2.8-fold increased levels as compared with control, respectively. Hence, findings suggest that light and UV can synergistically improve the metabolism of F. indica and could be used to produce such valuable metabolites on commercial scale.


Assuntos
Antioxidantes/metabolismo , Luz , Compostos Fitoquímicos/metabolismo , Células Vegetais/metabolismo , Raios Ultravioleta , Zygophyllaceae/metabolismo , Antioxidantes/efeitos da radiação , Técnicas In Vitro , Compostos Fitoquímicos/efeitos da radiação , Células Vegetais/efeitos da radiação , Zygophyllaceae/crescimento & desenvolvimento , Zygophyllaceae/efeitos da radiação
2.
Biomolecules ; 10(6)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560534

RESUMO

Linum usitatissimum biosynthesizes lignans and neolignans that are diet and medicinally valuable metabolites. In recent years, zinc oxide nanoparticles (ZnONPs) have emerged as potential elicitors for the enhanced biosynthesis of commercial secondary metabolites. Herein, we investigated the influence of biogenic ZnONPs on both seedlings and stem-derived callus of L. usitatissimum. Seedlings of L. usitatissimum grown on Murashige and Skoog (MS) medium supplemented with ZnONPs (1-1000 mg/L) presented the highest antioxidant activity, total phenolic content, total flavonoid content, peroxidase and superoxide dismutase activities at 500 mg/L, while the maximum plantlet length was achieved with 10 mg/L. Likewise, the high-performance liquid chromatography (HPLC) analysis revealed the enhanced production of secoisolariciresinol diglucoside, lariciresinol diglucoside, dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-ß-coniferyl alcohol ether glucoside in the plantlets grown on the 500 mg/L ZnONPs. On the other hand, the stem explants were cultured on MS media comprising 1-naphthaleneacetic acid (1 mg/L) and ZnONPs (1-50 mg/L). The highest antioxidant and other activities with an enhanced rooting effect were noted in 25 mg/L ZnONP-treated callus. Similarly, the maximum metabolites were also accumulated in 25 mg/L ZnONP-treated callus. In both systems, the dose-dependent production of reactive oxygen species (ROS) was recorded, resulting in oxidative damage with a more pronounced toxic effect on in vitro cultures. Altogether, the results from this study constitute a first comprehensive view of the impact of ZnONPs on the oxidative stress and antioxidant responses in seedlings vs. in vitro cultures.


Assuntos
Antioxidantes/farmacologia , Linho/efeitos dos fármacos , Nanopartículas/química , Plântula/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Linho/química , Linho/metabolismo , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/metabolismo
3.
PLoS One ; 15(6): e0233963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530961

RESUMO

Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (ß-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.


Assuntos
Antioxidantes/metabolismo , Eclipta/metabolismo , Eclipta/efeitos da radiação , Hipoglicemiantes/metabolismo , Compostos Fitoquímicos/metabolismo , Antioxidantes/química , Cumarínicos/metabolismo , Eclipta/crescimento & desenvolvimento , Flavonoides/metabolismo , Hipoglicemiantes/química , Luz , Fenóis/metabolismo , Compostos Fitoquímicos/química , Metabolismo Secundário/efeitos da radiação , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...